
Implementing Zermelo’s

axiomatics and proof of the

well-ordering theorem in

Lestrade, a dependent types

theorem prover

M. Randall Holmes

Boise State Math Dept graduate seminar,

9/27/2019

1



Abstract

Over a few weeks in the summer, we imple-

mented much of the content of Zermelo’s im-

portant set theory papers of 1908, including

the original axiomatization of Zermelo set the-

ory, the precursor of our current set theory

ZFC, and Zermelo’s proof of the Well-Ordering

Theorem, under our dependent type theory

based theorem proving system Lestrade. We

will give an overview of this work.

2



Zermelo’s 1908 papers

The papers appearing in 1908 were a second

(?) version of Zermelo’s proof of the Well-

Ordering theorem (if one has the axiom of

choice, then every set is well-ordered) and a

paper describing the axioms of something close

to what we now call “Zermelo set theory”,

which with the addition of axioms of Replace-

ment and Choice (around 1920) became the

currently dominant system of set theory ZFC.

It is a reasonable premise that the exact pur-

pose of Zermelo’s axiomatics paper was to pro-

vide a firm foundation for his proof of the Well-

Ordering Theorem. The paper does, however,

include further investigations of the notion of

transfinite cardinal number.

3



Lestrade is a theorem proving system which I

have been developing for a number of years,

belonging to a class of such systems based on

dependent type theory. We will discuss what

this means.

The motivations of Lestrade are actually ul-

timately in philosophy of mathematics, and I

will indulge myself by briefly describing these.

But it turns out to be recognizably a member

of a known family of theorem proving systems,

the descendants of the system Automath de-

veloped by N de Bruijn in the 1970’s.

4



First philosophical point: the na-
ture of functions

We learn in university math classes at a certain

point that a function is “a set of ordered pairs

in which no two elements have the same first

projection”. But we all know that that is not

what we learned a function was at first. A

function is initially presented to us as a rule or

procedure for getting an output given an input.

In the most basic case, a function is simply an

expression with holes in it into which we are to

insert the input to replace an unknown:

f(x) = x2 + x + 1

can be taken as an archetypal example.

5



This bears on whether we think a function is

an infinite object (infinity being an important

consideration in philosophy of mathematics).

The ordered pair definition of a function is ap-

pealing if one has no qualms about actual in-

finities: we simply tabulate the values of the

function in every individual case.

A function understood as a machine which re-

acts to any given input to produce an output

is compatible with the notion of a function as

a finite object (with a potential infinity of pos-

sible outputs determined by a potential infinity

of possible inputs). The expression x2 + x + 1

looks finite!

6



Second philosophical point: proofs
as mathematical objects

Lestrade was further intended to implement

a certain view of proofs as being themselves

mathematical objects. This view is often called

the “Curry-Howard isomorphism”.

Under this view, each proposition A is associ-

ated with a type that A (this is Lestrade no-

tation, not standard) inhabited by proofs of or

evidence for A.

Logical operations then correspond to opera-

tions on types (sometimes very familiar oper-

ations on types).

7



Conjunction (“and”)

We have a proof of A ∧ B iff we have a proof

of A and a proof of B.

This can be handled by saying that a proof of

A∧B is a pair (a, b) where a is a proof of A and

b is a proof of B, whence the type that A ∧ B

can simply be identified with thatA× thatB.

The logical operation of conjunction corresponds

to the type theory or set theory operation of

cartesian product.

8



Implication

A typical way of proving A→ B is to show that

if we assume A, B must follow.

That is, if we are presented with a of type that

A, we should have b of type that B. So we

identify proofs of A → B with functions from

that A to that B ∗: the type that A→ B is im-

plemented as thatBthatA, and the logical op-

eration of implication corresponds to the type

theory or set theory construction of spaces of

functions.

For example, for any A, the identity function

which takes any a in thatA to a itself is a proof

of A→ A.

∗This is not exactly what we do in Lestrade, but it is
very close.

9



Universal quantifier

A typical way of proving (∀x ∈ D : P (x)) is to

assume that t is an arbitrary element of D and

show how to get a proof of P (t).

This suggests the implementation of a proof

of (∀x ∈ D : P (x)) as a function taking each

d ∈ D to a proof of P (d).

In set theoretical terms, we are identifying

that (∀x ∈ D : P (x))

with Πd∈D(thatP (d)), the infinite cartesian prod-

uct of the sets thatP (d) indexed by the domain

D.

In type theory, the implementation would be

the same: this would be a theory with depen-

dent types, as the type thatP (d) of the output

for input d depends on the value of d.

10



We describe how this looks in Lestrade.

Lestrade execution:

declare p prop

>> p: prop {move 1}

declare q prop

>> q: prop {move 1}

postulate & p q prop

>> &: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

11



In a Lestrade environment, the declare com-

mand introduces parameters of given types to

be supplied to postulated operations. postulate

introduces objects and constructions which we

actually postulate.

So the text here declares an operation (in-

tended, it appears, to be conjunction) which

takes two propositions as input and outputs a

proposition. prop, the type of propositions, is

a primitive of Lestrade.

12



Lestrade execution:

declare pp that p

>> pp: that p {move 1}

declare qq that q

>> qq: that q {move 1}

declare rr that p & q

>> rr: that (p & q) {move 1}

13



Here we declare some parameters which will be

used as input to constructions postulated on

the next slide. Note that for any proposition

p, that p is a type (intended to be inhabited

by evidence that p is true, which may be un-

derstood as proofs of p but need not be so

understood).

Note that Lestrade does understand use of &

as an infix.

14



Lestrade execution:

postulate Conj pp qq that p & q

>> Conj: [(.p_1:prop),(pp_1:that .p_1),(.q_1:
>> prop),(qq_1:that .q_1) => (---:that (.p_1
>> & .q_1))]
>> {move 0}

postulate Simp1 rr that p

>> Simp1: [(.p_1:prop),(.q_1:prop),(rr_1:that
>> (.p_1 & .q_1)) => (---:that .p_1)]
>> {move 0}

postulate Simp2 rr that q

>> Simp2: [(.p_1:prop),(.q_1:prop),(rr_1:that
>> (.p_1 & .q_1)) => (---:that .q_1)]
>> {move 0}

15



On this slide we postulate the rules of infer-

ence for the conjunction connective, the fa-

miliar rules

A
B

A ∧B by conjunction

A ∧B
A by simplification(1)

A ∧B
B by simplification(2)

16



Implicit arguments

If one looks carefully at the declarations of the

rules of inference for conjunction, one sees that

their explicit arguments are not the only argu-

ments they have: the rule Conj of conjunction

actually has four parameters, p, q, pp, and qq.

But p and q can be left implicit because they

can be deduced from the types of the explicitly

given parameters.

Implementing this was a fair amount of work

but made the system much more practical.

17



Lestrade execution:

postulate -> p q prop

>> ->: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

declare ss that p -> q

>> ss: that (p -> q) {move 1}

postulate Mp pp ss that q

>> Mp: [(.p_1:prop),(pp_1:that .p_1),(.q_1:prop),

>> (ss_1:that (.p_1 -> .q_1)) => (---:that

>> .q_1)]

>> {move 0}

18



Here we declare the implication connective and

the rule of modus ponens. The parameters

declared earlier are still available to us.

19



Lestrade execution:

declare ded [pp => that q] \

>> ded: [(pp_1:that p) => (---:that q)]

>> {move 1}

postulate Ded ded that p -> q

>> Ded: [(.p_1:prop),(.q_1:prop),(ded_1:[(pp_2:

>> that .p_1) => (---:that .q_1)])

>> => (---:that (.p_1 -> .q_1))]

>> {move 0}

20



On this slide we declare our primitive technique

of proving implications, which is usually called

the deduction theorem.

We declare the parameter ded as a construc-

tion taking a proof of p as input and having

output a proof of q. [pp => that q] is a nota-

tion for a construction type. If we have such

a construction, we should believe p → q, and

that is what we postulate via the declaration

of Ded.

Notice that we do not actually identify the

proof of p → q with the construction (func-

tion) witnessing it. There are reasons for this.

21



Lestrade execution:

declare D type

>> D: type {move 1}

declare d in D

>> d: in D {move 1}

declare pred [d => prop] \

>> pred: [(d_1:in D) => (---:prop)]
>> {move 1}

22



We set up for the declaration of the universal

quantifier and its rules. We introduce as pa-

rameters a type D, an object d of type D, and

a predicate pred of type D objects (a function

taking an element d of type D to a proposi-

tion).

23



Lestrade execution:

postulate Forall pred prop

>> Forall: [(.D_1:type),(pred_1:[(d_2:in .D_1)
>> => (---:prop)])
>> => (---:prop)]
>> {move 0}

declare univev that Forall pred

>> univev: that Forall(pred) {move 1}

declare d2 in D

>> d2: in D {move 1}

postulate Ui univev d2 that pred d2

>> Ui: [(.D_1:type),(.pred_1:[(d_2:in .D_1)
>> => (---:prop)]),
>> (univev_1:that Forall(.pred_1)),(d2_1:
>> in .D_1) => (---:that .pred_1(d2_1))]
>> {move 0}

24



On this slide, we declare the universal quanti-

fier and the rule of universal instantiation.

Forall pred would more usually be written

(∀x ∈ D : pred(x)).

univev is a parameter, evidence that

(∀x ∈ D : pred(x)).

The rule Ui takes as input evidence that

(∀x ∈ D : pred(x)) and a d ∈ D and outputs

evidence that pred(d), which is quite familiar.

25



Lestrade execution:

declare univev2 [d => that pred d] \

>> univev2: [(d_1:in D) => (---:that pred(d_1))]

>> {move 1}

postulate Ug univev2 that Forall pred

>> Ug: [(.D_1:type),(.pred_1:[(d_2:in .D_1)

>> => (---:prop)]),

>> (univev2_1:[(d_3:in .D_1) => (---:that

>> .pred_1(d_3))])

>> => (---:that Forall(.pred_1))]

>> {move 0}

26



On this slide we complete our sample logic

declarations by declaring the rule of univer-

sal generalization. Given a construction tak-

ing each d ∈ D to evidence for pred(d) (notice

the dependent typing), we obtain evidence that

(∀d ∈ D : pred(d)), as we would expect.

Again, the evidence for the universal state-

ment is not identified with the construction

(function) as in our abstract description of the

Curry-Howard isomorphism. We might suggest

our reasons for this briefly later, or might not.

27



We present a proof in first-order logic as a

sample interaction with Lestrade. We prove

(∀x : P (x))∧ (∀x : P (x)→ Q(x))→ (∀x : Q(x)).

28



Lestrade execution:

clearcurrent

declare D type

>> D: type {move 1}

declare d in D

>> d: in D {move 1}

declare P [d => prop] \

>> P: [(d_1:in D) => (---:prop)]
>> {move 1}

declare Q [d => prop] \

>> Q: [(d_1:in D) => (---:prop)]
>> {move 1}

29



Here we clear the parameters which have been

accumulating (clearcurrent) and declare pa-

rameters for the intended proof.



Lestrade execution:

open

declare d3 in D

>> d3: in D {move 2}

declare initialev that (Forall P) & Forall \

[d3 =>(P d3) -> (Q d3)] \

>> initialev: that (Forall(P) & Forall([(d3_1:

>> in D) => ((P(d3_1) -> Q(d3_1)):prop)]))

>> {move 2}

30



Here we open a local environment in which we

will define a function from which we can make

a proof of the conditional theorem that we aim

to prove.

initialev is of the right type to be the input to

such a function. The variable d3 is not actually

a parameter: it is provided for use as a bound

variable in the definition of initialev.



Lestrade execution:

define line1 initialev: Simp1 initialev

>> line1: [(initialev_1:that (Forall(P) &
>> Forall([(d3_2:in D) => ((P(d3_2) ->
>> Q(d3_2)):prop)]))
>> ) => (---:that Forall(P))]
>> {move 1}

define line2 initialev: Simp2 initialev

>> line2: [(initialev_1:that (Forall(P) &
>> Forall([(d3_2:in D) => ((P(d3_2) ->
>> Q(d3_2)):prop)]))
>> ) => (---:that Forall([(d3_4:in D)
>> => ((P(d3_4) -> Q(d3_4)):prop)]))
>> ]
>> {move 1}

31



Here we extract the two “conjuncts” of initialev

(as functions of initialev).



Lestrade execution:

open

declare d2 in D

>> d2: in D {move 3}

32



We open another local environment, suitable

for constructing the function from which we

will make the proof of our conclusion (∀x ∈ D :

Q(x)). This will be a function taking d2 ∈ S as

input and returning a proof of Q(d2).

A brief summary of what the local environ-

ments (introduced with open and closed with

close) do: when we declare parameters and

then define expressions in terms of those pa-

rameters in the local environment, Lestrade at

the same time defines functions of parameters

of those types which can be referenced outside

the local environment when it is closed and its

local declarations disappear.



Lestrade execution:

define line3 d2: Ui line1 initialev \
d2

>> line3: [(d2_1:in D) => (---:that P(d2_1))]
>> {move 2}

define line4 d2: Ui line2 initialev \
d2

>> line4: [(d2_1:in D) => (---:that (P(d2_1)
>> -> Q(d2_1)))]
>> {move 2}

33



line3 is the proof that P (d2) by universal in-

stantiation from our assumption that (∀x ∈ D :

P (x)).

line4 is the proof that P (d2)→ Q(d2), similarly

by universal instantiation.



Lestrade execution:

define line5 d2: Mp line3 d2 line4 \
d2

>> line5: [(d2_1:in D) => (---:that Q(d2_1))]
>> {move 2}

close

define line6 initialev: Ug line5

>> line6: [(initialev_1:that (Forall(P) &
>> Forall([(d3_2:in D) => ((P(d3_2) ->
>> Q(d3_2)):prop)]))
>> ) => (---:that Forall(Q))]
>> {move 1}

34



line5 draws the conclusion Q(d2) by modus

ponens from line3 and line4.

We close the local environment in which line5

was defined as an expression in d2: but in the

containing environment, line5 is still visible as

a function of a parameter d2, and so we can

apply universal generalization to this function

to get line6, a proof that (∀x ∈ D : Q(x)).



Lestrade execution:

close

define Thetheorem P, Q: Ded line6

>> Thetheorem: [(.D_1:type),(P_1:[(d_2:in .D_1)
>> => (---:prop)]),
>> (Q_1:[(d_3:in .D_1) => (---:prop)])
>> => (Ded([(initialev_5:that (Forall(P_1)
>> & Forall([(d3_6:in .D_1) => ((P_1(d3_6)
>> -> Q_1(d3_6)):prop)]))
>> ) => (Ug([(d2_7:in .D_1) => (((Simp1(initialev_5)
>> Ui d2_7) Mp (Simp2(initialev_5)
>> Ui d2_7)):that Q_1(d2_7))])
>> :that Forall(Q_1))])
>> :that ((Forall(P_1) & Forall([(d3_11:in
>> .D_1) => ((P_1(d3_11) -> Q_1(d3_11)):
>> prop)]))
>> -> Forall(Q_1)))]
>> {move 0}

35



We then close the local environment in which
line6 was defined, but line6 is still visible in the
containing environment as a function taking
initialev of type that (∀x ∈ D : P (x)) ∧ (∀y ∈
D : P (y) → Q(y)) as input and giving output
of type that (∀z ∈ D : Q(z)).

Application of the deduction theorem to this
function gives the desired proof of the condi-
tional theorem. Notice that this is actually a
function of the parameters P,Q, the predicates
involved, and so can be invoked with different
predicates as arguments.

For objects defined unconditionally (not in a
local environment), Lestrade will display the
actual body of a defined function (it could dis-
play such terms at all levels, but the display
would be much more verbose). It is rather
dense, but a term is presented representing the
mathematical object we constructed to witness
the proof of the theorem.

36



This ends the first part of the talk, in which

I try to give an impression of what the flavor

of work under the Lestrade theorem prover is

like. There is a lot more to say about this:

there is technical description on my web site.

In the second part, I am going to show you

highlights from the work I did over the sum-

mer. The slides here will provide landmarks

for a high level tour of the actual documents I

produced in the summer, which I will display.

37



The documents we will look at (and indeed the

very slides you are looking at) have a dual na-

ture. Their LaTeX source is also executable

by Lestrade, which identifies labelled verba-

tim blocks in the LaTeX document as Lestrade

codes, runs these blocks and inserts Lestrade’s

responses to the commands it finds in the file.

This means that Lestrade proof scripts can be

very nicely commented: in fact, we can write

something like a mathematical paper in parallel

with the proof development in Lestrade.

Lestrade feedback is rather verbose, so the

documents are large.

38



The first document, logical pre-
liminaries

I’ll skim through this one. It should look fa-

miliar after our development of selected logical

primitives in the first part. One notable differ-

ence is that in our first part we present quan-

tification over a type D (which can be supplied

as a parameter). In the Zermelo development

all objects are of the fixed type obj, and we

develop quantifiers over this type (designed to

serve as the global type for a theory like ZFC

in having only one type of object).

39



It is worth noting that we started with a de-

velopment of logical primitives for constructive

logic, to which we added the law of excluded

middle (which we do use). This means that

our set of primitives is not economical as the

reductions of basic connectives to a set of one

or two which are familiar to us do not work

constructively.

As a matter of file development, we then proved

those lemmas in logic (and in later portions of

the document) which we actually turned out

to need in the development of still later parts

of the document. A fully developed logical

preliminaries document would probably have a

larger suite of theorems of propositional and

first order logic: we proved the ones we used

as needed.

Maybe take a look at logic of equality, pp. 37,

42, 44.

40



The second document: 1908 Zer-
melo set theory axiomatics

In this file we developed all the content of the

first part of Zermelo’s 1908 paper on axiomat-

ics, and we are starting to develop his second

part on the theory of cardinality.

We note that we follow the clear sense of the

paper in allowing there to be many non-sets

with no elements. Zermelo is quite clear that

he is allowing this.

41



We have an extensive anachronistic section in

which we introduce the Kuratowski ordered

pair and prove its basic properties. We may

visit this in the document, time permitting.

Students may be well aware that verifying the

properties of the Kuratowski pair from first

principles is a large task. People at my last

talk in the logic seminar will be aware that

Zermelo carries out his investigations of cardi-

nality in the second half of this paper and his

proof of the well ordering theorem in the other

paper without using an ordered pair at all!

42



I will note just as an aside (it would take too

much time to really explain) that it requires

care to get the axiom of separation to have

the correct strength.

Under Automath∗, the parent system of Lestrade,

a formalization of Zermelo in the straightfor-

ward way essentially automatically gives a for-

malization of second order Zermelo set theory,

in which one can quantify over proper classes.

Lestrade’s type system is just enough weaker

than Automath’s type system that the distinc-

tion between a scheme of separation in the

modern style and a second-order axiom can be

drawn.

Zermelo, by all accounts, would have preferred

the second-order axiom!

∗The same danger might exist with the widely used
modern descendant of Automath, Coq, but I am not
certain of this.

43



The document includes the practical applica-

tion of Russell’s paradox, that {x ∈ A : x 6∈ x}
is not an element of A for any set A.

The document uses Zermelo’s original formu-

lation of the natural numbers and the axiom

of infinity. I might say a brief word about the

difference.

The section under development on cardinal equiv-

alence will present interesting difficulties, as

Zermelo does not have a definition of the or-

dered pair as a set. I am only at the beginning

of implementing this work.

44



The proof of the well-ordering
theorem

I’ll give an overview of this proof.

Zermelo’s aim is to prove that every set can be

well-ordered (a well-ordering being a linear or-

der of a set under which each nonempty subset

of the set has a minimal element).

Zermelo does not have an ordered pair at his

disposal. He can however implement a well-

ordering as the set of its final segments. This

method of implementing relations as sets will

work for any linear order and in fact for a wider

class of relations.

45



He states the Axiom of Choice in the form

“Every collection of pairwise disjoint sets has

a choice set”.

However, this is not the form of choice he uses

in his argument for the well-ordering theorem.

Instead, he postulates a set M along with a

method for choosing a distinguished element

from each nonempty subset of M . Only after

his main proof does he argue (via references to

results in the axiomatics paper) that the Axiom

as he states it allows him to assume that he

can choose elements from nonempty subsets of

M in this way. We have fully implemented the

main proof (that given a method of choosing

an element from each nonempty subset of M

we can produce a well-ordering of M); we have

not yet completed the proof that AC implies

that there is such a method.

46



For any subset A of M , we define A′ as A\{a},
where a is the distinguished member of A (∅
is assigned a distingished member too in our

formalism, which is of no interest: ∅′ = ∅).

We define a Θ-chain as a set C of subsets

of M with the properties that it contains M

as an element, contains A′ as an element if it

contains A, and contains
⋂
D as an element for

each nonempty subset D of C.

The intersection of all Θ-chains is the collec-

tion of final segments of a well-ordering of M .

47



Doesn’t that seem seductively easy? It re-

quires proof.

One needs to prove that the intersection of all

Θ-chains is a Θ-chain.

One then proves that the intersection of all

Θ-chains is a linear order. One proves this

by showing that for any fixed B in the inter-

section of all Θ-chains, the collection of D in

the intersection of all Θ-chains such that ei-

ther B ⊆ D or D ⊆ B is itself a Θ-chain and

so is in fact the entire intersection of all Θ-

chains. . . Pause to get your mind around this

impredicative wonder!

The minimal element of a nonempty subset of

M is then the distinguished element of the in-

tersection of all elements of the intersection of

all Θ-chains which include the given nonempty

set as a subset. Isn’t that obvious?
48



We have some remarks about the experience

of proving this.

First, Zermelo’s method for choosing a distin-

guished element of each set, which he postu-

lates at the outset of his main argument, is not

presented as a set theoretical object at all (we

would in modern terms call this a choice func-

tion). Lestrade supports this style: we declare

a construction as a parameter of our argument

(which we will eventually show that we can

implement using AC when we complete this

work). Here Lestrade matched Zermelo’s style

of reasoning well.

49



Second, the issue of blowup of size of proofs

when they are formalized. It is the general ru-

mor that formalized proofs are inconveniently

large. Indeed, writing formalized proofs is te-

dious, resembling computer programming more

than argument in the usual sense. However,

from the beginnings of the Automath project,

workers have observed that the actual blowup

factor is much less than folklore suggests: folk-

lore proposes 20; actual attempts to measure

it in practice suggest 4 or 5 as the blowup fac-

tor (in a suitable metric on size ; of course this

is not a measure of effort.)

There is a lot more experience with this now.

When I first started working in this area, if

you named a famous theorem it had very likely

never been formalized. At this point, if you

name a famous theorem, it has probably been

verified under some theorem proving system.

50



But this patticular proof, which takes a few

pages in the source, in fact blows up enor-

mously. The problem is the impredicative char-

acter of the argument. Zermelo’s argument is

seductively brief (not really very much longer

than my summary above). But every verifi-

cation that something is a Θ-chain involves

verification of three claims, two of which are

logically quite complex. When I formalized the

proof, it came out as quite large (the hundreds

of pages of the document are not a good mea-

sure of this, as Lestrade feedback is somewhat

verbose, but the blowup factor is still clearly

much larger than usual).

51



I have done other formalizations with Lestrade

which appear to bear out the experience of

other workers that one is usually looking at a

linear blowup factor which is not as large as one

expects (though still productive of tedium!) It

would be interesting to revisit the argument

and see if there is some way I could prove suit-

able lemmas which would vastly reduce the size

of the text. Certainly Zermelo’s argument is

convincing on careful reading and not all that

long...but it is also quite clear where a claim

made in a sentence or two can conceal an enor-

mous amount of checking.

52



Future activities

Other formalizations might be interesting. For

example, I am tempted to see what a formal-

ization of the content I present from Spivak’s

calculus book in Math 314 would look like in

Lestrade.

I am interested in applications of formalized

proof systems in teaching logic. Lestrade is

actually fairly well adapted to presenting the

style of formal reasoning I teach in classes, but

I have never tried to present a logic lab using

this software. The Automath group did teach

logic using their software, which is quite similar

in its underlying philosophy and probably less

user-friendly.

53



Lestrade looks like the type declaration sys-

tem of a functional programming language. I

am contemplating what it would look like if it

actually were a functional programming lan-

guage, with the additional feature that one

could present formal proofs (presumably of cor-

rectness of pieces of one’s programs) in the

same environment. There are current language

projects along these lines, similar in some ways

and different in others.

54


